Effective Task Scheduling and IP Mapping Algorithm for Heterogeneous NoC-Based MPSoC

Author:

Yang Peng-Fei1,Wang Quan1

Affiliation:

1. School of Computer, Xidian University, Xi’an 710071, China

Abstract

Quality of task scheduling is critical to define the network communication efficiency and the performance of the entire NoC- (Network-on-Chip-) based MPSoC (multiprocessor System-on-Chip). In this paper, the NoC-based MPSoC design process is favorably divided into two steps, that is, scheduling subtasks to processing elements (PEs) of appropriate type and quantity and then mapping these PEs onto the switching nodes of NoC topology. When the task model is improved so that it reflects better the real intertask relations, optimized particle swarm optimization (PSO) is utilized to achieve the first step with expected less task running and transfer cost as well as the least task execution time. By referring to the topology of NoC and the resultant communication diagram of the first step, the second step is done with the minimal expected network transmission delay as well as less resource consumption and even power consumption. The comparative experiments have shown the preferable resource and power consumption of the algorithm when it is actually adopted in a system design.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobile Networks-on-Chip Mapping Algorithms for Optimization of Latency and Energy Consumption;Mobile Networks and Applications;2021-09-18

2. Statistical language models for query-by-example spoken document retrieval;Multimedia Tools and Applications;2020-01-03

3. Partially shared cache and adaptive replacement algorithm for NoC-based many-core systems;Journal of Systems Architecture;2019-09

4. Energy Optimization of Streaming Applications in IoT on NoC Based Heterogeneous MPSoCs using Re-Timing and DVFS;2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI);2019-08

5. Thermal-aware task allocation and scheduling for periodic real-time applications in mesh-based heterogeneous NoCs;Real-Time Systems;2019-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3