An Extensive Study Using the Beetle Swarm Method to Optimize Single and Multiple Objectives of Various Optimal Power Flow Problems

Author:

Sriram K.1ORCID,Mangaiyarkarasi S. P.2ORCID,Sakthivel S.3ORCID,Jebaraj L.4ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, St. Anne’s College of Engineering and Technology, Panruti, Tamil Nadu, India

2. Department of Electrical and Electronics Engineering, University College of Engineering, Panruti, Tamil Nadu, India

3. Department of Electrical and Electronics Engineering, Nehru Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India

4. Department of Electrical and Electronics Engineering, P.S.R. Engineering College, Sivakasi, Tamil Nadu, India

Abstract

An electric energy generation system, under the economic operation mode, is an imperative mission in the power system function. This article deals with the use of beetle swarm optimization algorithm (BSOA), for optimal power flow (OPF) solution, in an effective approach. BSOA is a competent optimization technique, to handle multimodal, nonlinear, and nondifferentiable objective functions. The proposed OPF is modeled by numerous objective functions, formulations with constraints, examined with thirty-one different cases, on the three distinguished test systems (IEEE 30, 57, and 118-bus), using single and weighted sum multiobjectives. Six new multiobjective cases are also studied. The control variables, such as real generation of power, tap setting ratio of transformers, bus voltages magnitudes, and the values of shunt capacitor, are also optimized. Potency and robustness of this proposed method were investigated and evaluated with more recent findings reported in the literature. This extensive study revealed the preeminence of the presented technique, applied to OPF problem, with intricate and nonsmooth objective functions.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3