Heme Oxygenase 1/Peroxisome Proliferator-Activated Receptor Gamma Pathway Protects Intimal Hyperplasia and Mitigates Arteriovenous Fistula Dysfunction by Regulating Oxidative Stress and Inflammatory Response

Author:

Xie Tingfei1,Xu Yunpeng2,Ji Lecai34,Sui Xiaolu5,Zhang Aisha5,Zhang Yanzi5,Chen Jihong12ORCID

Affiliation:

1. Department of Nephrology, Affiliated Bao’an Hospital of Shenzhen, The Second School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518000, China

2. Department of Nephrology, Bao’an Clinical Medical School of Guangdong Medical University, Shenzhen, Guangdong 518000, China

3. The Second School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518000, China

4. Department of Tuberculosis, Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518000, China

5. Department of Nephrology, Affiliated Bao’an Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong 518000, China

Abstract

Purpose. An arteriovenous fistula (AVF) is the preferred vascular access mode for maintenance hemodialysis, and access stenosis and thrombosis are the primary causes of AVF dysfunction. This study is aimed at exploring the molecular mechanisms underlying AVF development and the roles of the heme oxygenase 1/peroxisome proliferator-activated receptor gamma (HO-1/PPAR-γ) pathway in AVF. Method. AVF model mice were established, and the vascular tissues from the arteriovenous anastomosis site were sent for mRNA sequencing. Differentially expressed mRNAs (DEmRNAs) were screened and subjected to functional analysis. Thereafter, the mice with HO-1 knockdown and coprotoporphyrin IX chloride (COPP) pretreatment were used to investigate the roles of the HO-1/PPAR-γ pathway in AVF. Results. By sequencing, 2514 DEmRNAs, including 1323 upregulated and 1191 downregulated genes, were identified. These DEmRNAs were significantly enriched in the PPAR signaling pathway, AMPK signaling pathway, glucagon signaling pathway, IL-17 signaling pathway, and Toll-like receptor signaling pathway. High expression of HO-1 and PPAR-γ reduced endothelial damage and intimal hyperplasia during AVF maturation. After AVF was established, the levels of transforming growth factor-β (TGF-β), interleukin-1β (IL-1β), interleukin-18 (IL-18), and reactive oxygen species (ROS) were significantly increased ( P < 0.05 ), and HO-1 normal expression and COPP pretreatment evidently decreased their levels in AVF ( P < 0.05 ). Additionally, AVF significantly upregulated HO-1 and PPAR-γ and downregulated MMP9, and COPP pretreatment and HO-1 normal expression further upregulated and downregulated their expression. Conclusion. The HO-1/PPAR-γ pathway may suppress intimal hyperplasia induced by AVF and protect the intima of blood vessels by regulating MMP9 and ROS, thus mitigating AVF dysfunction.

Funder

Shenzhen Baoan District High-Level Talent Innovation Project

Publisher

Hindawi Limited

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3