Policy-Based Security Management System for 5G Heterogeneous Networks

Author:

Alquhayz Hani1ORCID,Alalwan Nasser2ORCID,Alzahrani Ahmed Ibrahim2ORCID,Al-Bayatti Ali H.3ORCID,Sharif Mhd Saeed4

Affiliation:

1. Department of Computer Science and Information, College of Science in Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia

2. Department of Computer Science, Community College, King Saud University, Riyadh 11437, Saudi Arabia

3. School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, UK

4. School of Architecture, Computing and Engineering, UEL, University Way, Dockland Campus, London E16 2RD, UK

Abstract

Advances in mobile phone technology and the growth of associated networks have been phenomenal over the last decade. Therefore, they have been the focus of much academic research, driven by commercial and end-user demands for increasingly faster technology. The most recent generation of mobile network technology is the fifth generation (5G). 5G networks are expected to launch across the world by 2020 and to work with existing 3G and 4G technologies to provide extreme speed despite being limited to wireless technologies. An alternative network, Y-Communication (Y-Comm), proposes to integrate the current wired and wireless networks, attempting to achieve the main service requirements of 5G by converging the existing networks and providing an improved service anywhere at any time. Quality of service (QoS), vertical handover, and security are some of the technical concerns resulting from this heterogeneity. In addition, it is believed that the Y-Comm convergence will have a greater influence on security than was the case with the previous long-term evolution (LTE) 4G networks and with future 5G networks. The purpose of this research is to satisfy the security recommendations for 5G mobile networks. This research provides a policy-based security management system, ensuring that end-user devices cannot be used as weapons or tools of attack, for example, IP spoofing and man-in-the-middle (MITM) attacks. The results are promising, with a low disconnection rate of less than 4% and 7%. This shows the system to be robust and reliable.

Funder

Deanship of Scientific Research, King Saud University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3