Characteristics of Karst Cave Development in Urban Karst Area and Its Effect on the Stability of Subway Tunnel Construction

Author:

Xue Fei1ORCID,Cai Minjun1ORCID,Wang Tianzuo1ORCID,Zhao Tongyang1ORCID

Affiliation:

1. College of Civil Engineering, Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, Shaoxing University, Shaoxing 312000, China

Abstract

The existence of karst caves poses a large threat to safe tunnel construction in a karst area. This paper presents a synthetic method to evaluate the collapse risk before subway tunnel construction with Yang-Jian interval tunnel as a case study. The crosshole seismic Computed Tomography (CT) integrated with Geological Drilling (Geo-D) was first applied to accurately delineate the karst location and its scale. Then, 483 groups of seismic wave CT images were recorded, and 524 karst cave anomalies were found. The height of karst caves in the study area is 1–20 m and mainly concentrated at approximately 5 m. The vertical distance between the karst cave and the tunnel is mainly within 15 m. According to the detection results, a series of numerical models were built and calculated using FLAC3D to investigate the effect of different sizes and locations of karst caves on the displacement and stability of the surrounding rock in tunnels. Afterwards, based on the simulation results, the disturbance degree evaluation index was established to quantitatively evaluate the risk level of karst caves. The evaluation results indicate that the buried depth of the karst cave greatly affects the disturbance degree. No treatment is required for the deeply buried karst cave that is more than 7 m from the tunnel. When the distance between the cave and the tunnel is less than 7 m, there is a critical size of the cave. Karst caves that are larger than that critical value must be filled with a single slurry or binary slurry before tunnel construction to eliminate the risk of tunnel collapse. This study can be used to provide a more efficient and economical program for metro tunnel construction above a karst cave.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3