Impact of Surface Undulation on Flow and Heat Transfer Characteristics in an Enclosure Filled with Nanoencapsulated Phase Change Materials (NEPCMs)

Author:

Alhashash A.1ORCID,Saleh H.2ORCID

Affiliation:

1. Department of Mathematics, College of Science Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia

2. Mathematics Education Department, Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru 28293, Indonesia

Abstract

The present study investigates the natural convection in a wavy enclosure caused by a thermal difference between a cold wall and a hot undulated wall. The enclosure is filled with hybrid nanofluids. The hybrid nanofluids are formed of a phase change material (PCM) suspended in the water. The PCM utilizes polyurethane as the shell and nonadecane as the core. The core absorbs or releases its energy in the shape of latent heat inside the water and contributes to thermal energy storage and heat transfer. The governing equations are expressed in PDEs and solved by the finite element method (FEM). Parametric studies were used to analyze the solid concentration, fusion temperature, amplitude of corrugation, number of corrugations, and Rayleigh number. It is found that the heat transfer rate enhances by the rise of the latent heat of the NEPCM cores. The global heat transfer can be improved by more than 12 % by adding 1 % of NEPCM particles volume fraction. However, the heat transfer tends to decrease by applying the wavy surface.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3