A Performance Comparison of Anaerobic and an Integrated Anaerobic-Aerobic Biological Reactor System for the Effective Treatment of Textile Wastewater

Author:

Kathawala Tasneem M.1ORCID,Gayathri K. Veena1ORCID,Senthil Kumar P.2ORCID

Affiliation:

1. Department of Biotechnology, Stella Maris College, Chennai, India

2. Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India

Abstract

The accumulation of recalcitrant azo dyes from untreated textile effluents has adversely impacted the ecosystem. The immense stability in their nature is conferred by the presence of azo bonds (N=N) in their structure. The reduction of this azo bond occurs exclusively under anaerobic conditions giving rise to colorless aromatic amines, which are carcinogenic. In the present study, a synthetic textile effluent containing mixed azo dyes such as Reactive Red, Reactive Black, and Reactive Brown, was treated using activated sludge under anaerobic conditions in a lab-scale anaerobic sequential batch reactor (An-SBR). At a concentration of 100 mg/L of mixed azo dyes, the An-SBR gave a maximum of 88% decolorization detected through UV-visible spectroscopy. Physicochemical analyses revealed 73% removal of BOD, 90% TDS removal, 69% COD removal, 4.05% TKN removal, 66% chloride removal, and 73% hardness removal. When the concentration of dyes was increased to 500 mg/L, the treatment showed a decrease in decolorization efficiency. This was then compared to a sequential anaerobic-aerobic treatment process performed in An-SBR and a laboratory-scale aerobic moving bed biofilm reactor (MBBR). The study revealed that the sequential process held more potential for commercial application than exclusively an anaerobic process. The metabolites formed during the treatment phase were extracted and analyzed by FT-IR and HPLC and identified through GC-MS analyses and were compared to those found in the untreated effluent. A phytotoxicity test was conducted on the remainder (secondary) sludge using Vigna unguiculata, and it was found to show a 50% reduction in germination and retardation in root and shoot length.

Funder

University Grants Commission

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3