Resveratrol Suppresses Severe Acute Pancreatitis-Induced Microcirculation Disturbance through Targeting SIRT1-FOXO1 Axis

Author:

Rong Yuping1ORCID,Ren Jun2,Song Wei2,Xiang Renshen2,Ge Yuhang2,Lu Wei2,Fu Tao2ORCID

Affiliation:

1. Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuhan, Hubei, 430060, China

2. Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuhan, Hubei, 430060, China

Abstract

Background. Resveratrol (RSV), one of the SIRT1 agonists, has the ability of alleviating severe acute pancreatitis (SAP); however, the concrete protective mechanism remains unknown. It is noteworthy that microcirculation disturbance plays a vital role in SAP, and the SIRT1/FOX1 axis can regulate microcirculation. Therefore, this study is aimed at ascertaining what is the underlying mechanism of the protective effect of RSV on SAP, and whether it is associated with alleviating microcirculation disturbance by regulating the SIRT1/FOX1 axis. Method. The model of SAP was induced by retrograde injection of sodium taurodeoxycholate into the bile duct of the rats. The pancreatic wet/dry weight, ET/NO, and TXB2/6-keto-PGF1α ratios; microcirculatory function; and SIRT1 activity were examined. ELISA was used to examine the serum level of lipase, amylase, hemorheology, ET, NO, TXB2, and 6-keto-PGF1α and the content of SIRT1, VEGF, Ang I, and Ang II in the pancreas. RT-PCR was used to examine the mRNA level of VEGF, Ang I, and Ang II. Western blotting was used to detect SIRT1, FOXO1, and acetyl-FOXO1. Immunoprecipitation was used to examine the interaction of SIRT1 and FOXO1. Results. Resveratrol can significantly decrease the expression of lipase, amylase, acetyl-FOXO1, VEGF, Ang II, ET, NO, TXB2, and 6-keto-PGF1α and the ratio of wet/dry weight, ET/NO, and TXB2/6-keto-PGF1α by improving microcirculatory dysfunction and blood viscosity in SAP. Moreover, resveratrol can also promote the interaction of SIRT1 and FOXO1 and increase SIRT1 activity and the expression of SIRT1 and Ang I. The SIRT1 inhibitor, Sirtinol (EX527), obliviously reversed the effects of RSV on SAP. Conclusion. Resveratrol can protect rats against SAP, and its protective mechanism is associated with suppressing microcirculation disturbance through activating SIRT1-FOXO1 axis.

Funder

Talent Introduction Fund of Wuhan Science and Technology Research Plan

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3