Validation of a One-Step Reverse Transcription-Droplet Digital PCR (RT-ddPCR) Approach to Detect and Quantify SARS-CoV-2 RNA in Nasopharyngeal Swabs

Author:

Mio Catia1ORCID,Cifù Adriana1ORCID,Marzinotto Stefania2,Marcon Barbara2,Pipan Corrado12,Damante Giuseppe12,Curcio Francesco12ORCID

Affiliation:

1. Department of Medicine (DAME), University of Udine, Udine, Italy

2. Department of Laboratory Medicine, University Hospital of Udine, Udine, Italy

Abstract

Background. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has rapidly spread worldwide from the beginning of 2020. Quantitative reverse transcription-PCR (RT-qPCR) is, to this day, the preferred methodology for viral RNA detection, even if not without problems. To overcome some of the limitations still existing for the detection and quantification of nucleic acids in various applications, the use of one-step reverse transcription-droplet digital PCR (RT-ddPCR) has been established. The purpose of this study was, then, to evaluate the efficacy of ddPCR for the detection of SARS-CoV-2 RNA in nasopharyngeal swabs, optimizing the detection of low-viral load-burdened samples. Methods. The RT-ddPCR workflow was validated for sensitivity, specificity, linearity, reproducibility, and precision using samples from 90 COVID-19-infected patients referred to the Department of Laboratory Medicine of the University Hospital of Udine (Italy). Results. The present study shows that RT-ddPCR allows the detection of as low as 10.3 copies of a SARS-COV-2 E-gene per sample with a higher level of accuracy and precision, especially at low concentration. Conclusion. During the postpeak phase of the SARS-CoV-2 pandemic, it is essential to rely on a highly robust molecular biology method to identify infected subjects, whether they have symptoms or not, in order to prepare appropriate containment measures.

Publisher

Hindawi Limited

Subject

Biochemistry, medical,Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3