Software Defect Prediction for Healthcare Big Data: An Empirical Evaluation of Machine Learning Techniques

Author:

Khan Bilal1,Naseem Rashid2ORCID,Shah Muhammad Arif2ORCID,Wakil Karzan3,Khan Atif4ORCID,Uddin M. Irfan5ORCID,Mahmoud Marwan6ORCID

Affiliation:

1. Department of Computer Science, City University of Science and Information Technology, Peshawar 25000, Pakistan

2. Department of IT and Computer Science, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan

3. Research Center, Sulaimani Polytechnic University, Sulimani 46001, Kurdistan Region, Iraq

4. Department of Computer Science, Islamia College, Peshawar 2500, Pakistan

5. Institute of Computing Kohat University of Science and Technology, Kohat, Pakistan

6. Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

Software defect prediction (SDP) in the initial period of the software development life cycle (SDLC) remains a critical and important assignment. SDP is essentially studied during few last decades as it leads to assure the quality of software systems. The quick forecast of defective or imperfect artifacts in software development may serve the development team to use the existing assets competently and more effectively to provide extraordinary software products in the given or narrow time. Previously, several canvassers have industrialized models for defect prediction utilizing machine learning (ML) and statistical techniques. ML methods are considered as an operative and operational approach to pinpoint the defective modules, in which moving parts through mining concealed patterns amid software metrics (attributes). ML techniques are also utilized by several researchers on healthcare datasets. This study utilizes different ML techniques software defect prediction using seven broadly used datasets. The ML techniques include the multilayer perceptron (MLP), support vector machine (SVM), decision tree (J48), radial basis function (RBF), random forest (RF), hidden Markov model (HMM), credal decision tree (CDT), K-nearest neighbor (KNN), average one dependency estimator (A1DE), and Naïve Bayes (NB). The performance of each technique is evaluated using different measures, for instance, relative absolute error (RAE), mean absolute error (MAE), root mean squared error (RMSE), root relative squared error (RRSE), recall, and accuracy. The inclusive outcome shows the best performance of RF with 88.32% average accuracy and 2.96 rank value, second-best performance is achieved by SVM with 87.99% average accuracy and 3.83 rank values. Moreover, CDT also shows 87.88% average accuracy and 3.62 rank values, placed on the third position. The comprehensive outcomes of research can be utilized as a reference point for new research in the SDP domain, and therefore, any assertion concerning the enhancement in prediction over any new technique or model can be benchmarked and proved.

Funder

Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3