Affiliation:
1. College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
Abstract
In recent years, with the continuous development of artificial intelligence and brain-computer interface technology, emotion recognition based on physiological signals, especially, electroencephalogram (EEG) signals, has become a popular research topic and attracted wide attention. However, how to extract effective features from EEG signals and accurately recognize them by classifiers have also become an increasingly important task. Therefore, in this paper, we propose an emotion recognition method of EEG signals based on the ensemble learning method, AdaBoost. First, we consider the time domain, time-frequency domain, and nonlinear features related to emotion, extract them from the preprocessed EEG signals, and fuse the features into an eigenvector matrix. Then, the linear discriminant analysis feature selection method is used to reduce the dimensionality of the features. Next, we use the optimized feature sets and train a classifier based on the ensemble learning method, AdaBoost, for binary classification. Finally, the proposed method has been tested in the DEAP data set on four emotional dimensions: valence, arousal, dominance, and liking. The proposed method is proved to be effective in emotion recognition, and the best average accuracy rate can reach up to 88.70% on the dominance dimension. Compared with other existing methods, the performance of the proposed method is significantly improved.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Reference42 articles.
1. Emotion recognition in human-computer interaction
2. Experimental methodology in emotion-oriented computing
3. Aesthetics and Emotions in Images
4. A review on feature selection and feature extraction for text classification;F. P. Shah
5. Recognizing emotions from whispered speech based on acoustic feature transfer learning;J. Deng;IEEE Access,2017
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献