Toward Enhancing the Energy Efficiency and Minimizing the SLA Violations in Cloud Data Centers

Author:

Elsedimy E. I.1ORCID,Algarni Fahad2ORCID

Affiliation:

1. Department of System and Information Technology, Faculty of Management Technology and Information System, Port Said University, Port Fuad 42526, Egypt

2. Faculty of Computing and Information Technology, University of Bisha, Bisha 61922, Saudi Arabia

Abstract

Recently, the problem of Virtual Machine Placement (VMP) has received enormous attention from the research community due to its direct effect on the energy efficiency, resource utilization, and performance of the cloud data center. VMP is considered as a multidimensional bin packing problem, which is a type of NP-hard problem. The challenge in VMP is how to optimally place multiple independent virtual machines into a few physical servers to maximize a cloud provider’s revenue while meeting the Service Level Agreements (SLAs). In this paper, an effective multiobjective algorithm based on Particle Swarm Optimization (PSO) technique for the VMP problem, referred to as VMPMOPSO, is proposed. The proposed VMPMOPSO utilizes the crowding entropy method to optimize the VMP and to improve the diversity among the obtained solutions as well as accelerate the convergence speed toward the optimal solution. VMPMOPSO was compared with a simple single-objective algorithm, called First-Fit-Decreasing (FFD), and two multiobjective ant colony and genetic algorithms. Two simulation experiments were conducted to verify the effectiveness and efficiency of the proposed VMPMOPSO. The first experiment shows that the proposed algorithm has better performance than the algorithms we compared it to in terms of power consumption, SLA violation, and resource wastage. The second indicates that the Pareto optimal solutions obtained by applying VMPMOPSO have a good distribution and a better convergence than the comparative algorithms.

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3