Image Classification Algorithm Based on Big Data and Multilabel Learning of Improved Convolutional Neural Network

Author:

Chang Haibin1ORCID,Cui Ying2

Affiliation:

1. Academic Affair Office, Shaanxi Xueqian Normal University, Xi’an, 710100 Shaanxi, China

2. College of Equipment Management and Support, Engineering University of Chinese Armed Police Force, Xi’an, 710086 Shaanxi, China

Abstract

More and more image materials are used in various industries these days. Therefore, how to collect useful images from a large set has become an urgent priority. Convolutional neural networks (CNN) have achieved good results in certain image classification tasks, but there are still problems such as poor classification ability, low accuracy, and slow convergence speed. This article mainly introduces the image classification algorithm (ICA) research based on the multilabel learning of the improved convolutional neural network and some improvement ideas for the research of the ICA based on the multilabel learning of the convolutional neural network. This paper proposes an ICA research method based on multilabel learning of improved convolutional neural networks, including the image classification process, convolutional network algorithm, and multilabel learning algorithm. The conclusions show that the average maximum classification accuracy of the improved CNN in this paper is 90.63%, and the performance is better, which is beneficial to improving the efficiency of image classification. The improved CNN network structure has reached the highest accuracy rate of 91.47% on the CIFAR-10 data set, which is much higher than the traditional CNN algorithm.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3