Urban Land Use and Land Cover Classification Using Remotely Sensed SAR Data through Deep Belief Networks

Author:

Lv Qi12ORCID,Dou Yong12,Niu Xin12,Xu Jiaqing2,Xu Jinbo2,Xia Fei3

Affiliation:

1. Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China

2. School of Computer, National University of Defense Technology, Changsha 410073, China

3. Electronic Engineering College, Naval University of Engineering, Wuhan 430033, China

Abstract

Land use and land cover (LULC) mapping in urban areas is one of the core applications in remote sensing, and it plays an important role in modern urban planning and management. Deep learning is springing up in the field of machine learning recently. By mimicking the hierarchical structure of the human brain, deep learning can gradually extract features from lower level to higher level. The Deep Belief Networks (DBN) model is a widely investigated and deployed deep learning architecture. It combines the advantages of unsupervised and supervised learning and can archive good classification performance. This study proposes a classification approach based on the DBN model for detailed urban mapping using polarimetric synthetic aperture radar (PolSAR) data. Through the DBN model, effective contextual mapping features can be automatically extracted from the PolSAR data to improve the classification performance. Two-date high-resolution RADARSAT-2 PolSAR data over the Great Toronto Area were used for evaluation. Comparisons with the support vector machine (SVM), conventional neural networks (NN), and stochastic Expectation-Maximization (SEM) were conducted to assess the potential of the DBN-based classification approach. Experimental results show that the DBN-based method outperforms three other approaches and produces homogenous mapping results with preserved shape details.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3