Analytical Model of Bolted Joint Structure and Its Nonlinear Dynamic Characteristics in Transient Excitation

Author:

Liao Xin1ORCID,Zhang Jianrun1ORCID,Xu Xiyan2

Affiliation:

1. School of Mechanical Engineering, Southeast University, Nanjing 211189, China

2. School of Science, University Autonoma of Madrid, 28049 Madrid, Spain

Abstract

The dynamic response of crucial components often depends upon the dynamic behavior of bolted connections. As is usually the case, the accurate modeling of structures with many mechanical joints remains a challenge work. The nonlinear behavior included in assembled structures strongly depends on the interface properties. In this paper, an analytical model of the simple bolted joint beam in tangential direction is first proposed for transient excitation, based on phenomenological model. The fourth-order Runge-Kutta method is employed to calculate the transient response, where the dynamic response of the nonlinear stiffness on system is also investigated. The simulation results show that natural frequency has a certain dependence on cubic stiffness term and cubic stiffness is more suitable for modeling of nonlinear system of a wider frequency range. Thereby, a series Iwan model containing cubic stiffness term is established to describe nonlinear behaviors of bolted joint beams in shear vibration. The amplitude-frequency curves show that the influence of interaction between nonlinear stiffness and damping mechanism on dynamic response characteristics is more obvious. Finally, a new type of nonlinear model is applied into finite element analysis. The results of proposed transient excitation experiment are discussed qualitatively, indicating that nonlinear effects observed agree with the numerical simulation results.

Funder

Technology Grand Special Project

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3