MHD Slip Flow of CNT-Ethylene Glycol Nanofluid due to a Stretchable Rotating Disk with Cattaneo–Christov Heat Flux Model

Author:

Tulu Ayele1ORCID,Ibrahim Wubshet2ORCID

Affiliation:

1. Department of Mathematics, Wollega University, Nekemte, Ethiopia

2. Department of Mathematics, Ambo University, Ambo, Ethiopia

Abstract

This article deals with carbon nanoliquid flow due to stretchable rotating disk with the effect of Cattaneo–Christov heat flux model. Both SWCNTs and MWCNTs are considered with ethylene glycol as the base fluid. The effects of nanoparticle volume friction, normally applied magnetic field, stretching factor, velocity, and thermal slip factors are examined. The fundamental flow governing equations are transformed into dimensionless system of coupled nonlinear ordinary differential equations, and they are solved numerically using spectral quasi-linearization method (SQLM). Employing graphs and tables, the results of velocity and temperature fields as well as skin friction coefficient and local heat transfer rate are analyzed and presented via embedded parameters. The results reveal that higher velocity fields and lower temperature fields are noticed in the MWCNT nanofluids than SWCNT nanofluids. The higher incidence of magnetic field improves the thermal boundary layer thickness. A growth in velocity slip factor reduces the momentum boundary layer thickness of the nanoliquid flow. Generally, radial stretching of the disk is helpful in improving the cooling process of the rotating disk in practical applications.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3