Machine Learning-Based Two-Stage Task Offloading Optimization for Power Distribution Internet of Things

Author:

He Chenzidu1,Wu Yuanyuan1ORCID,Huang Mengxing1,Feng Siling1,Shu Feng1

Affiliation:

1. College of Information and Communication Engineering, Hainan University, Haikou 570228, China

Abstract

The increase in the number of services in the power distribution grid leads to a massive increase in task data. Power distribution internet of things (PDIoT) is the specific application of internet of things (IoT) in the power distribution grid. By deploying a large number of PDIoT devices, the voltage, active power, reactive power, and harmonic parameters are collected to support distribution grid services such as fault identification and status detection. Therefore, PDIoT utilizes massive devices to collect and offload tasks to the edge server through 5G network for real-time data processing. However, how to dynamically select edge servers and channels to meet the energy-efficient and low-latency task offloading requirements of PDIoT devices still faces several technical challenges such as task offloading decisions coupling among devices, unobtainable global state information, as well as interrelation of various quality of service (QoS) metrics such as energy efficiency and delay. To this end, we firstly construct a joint optimization problem to maximize the weighted difference between energy efficiency and delay of devices in PDIoT. Then, the joint optimization problem is decomposed into a large-timescale server selection problem and a small-timescale channel selection problem. Next, we propose an ML-based two-stage task offloading algorithm, where the large-timescale problem is solved by two-side matching in the first stage, and the small-timescale problem is solved by adaptive ε -greedy learning in the second stage. Finally, simulation results show that compared with the task offloading delay-first matching algorithm and the matching theory-based task offloading strategy, the proposed algorithm performs superior in terms of energy efficiency and delay.

Funder

Hainan University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Energy in Fog Computing Architecture Based on Offloading Mechanism for IoT Devices;2023 Asia Meeting on Environment and Electrical Engineering (EEE-AM);2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3