A Collaborative Deep and Shallow Semisupervised Learning Framework for Mobile App Classification

Author:

Lv MingQi1,Huang Chao1,Chen TieMing1ORCID,Wang Ting1

Affiliation:

1. Department of Computer Technology, ZheJiang University of Technology, Hangzhou, China

Abstract

With the rapid growth of mobile Apps, it is necessary to classify the mobile Apps into predefined categories. However, there are two problems that make this task challenging. First, the name of a mobile App is usually short and ambiguous to reflect its real semantic meaning. Second, it is usually difficult to collect adequate labeled samples to train a good classifier when a customized taxonomy of mobile Apps is required. For the first problem, we leverage Web knowledge to enrich the textual information of mobile Apps. For the second problem, the mostly utilized approach is the semisupervised learning, which exploits unlabeled samples in a cotraining scheme. However, how to enhance the diversity between base learners to maximize the power of the cotraining scheme is still an open problem. Aiming at this problem, we exploit totally different machine learning paradigms (i.e., shallow learning and deep learning) to ensure a greater degree of diversity. To this end, this paper proposes Co-DSL, a collaborative deep and shallow semisupervised learning framework, for mobile App classification using only a few labeled samples and a large number of unlabeled samples. The experiment results demonstrate the effectiveness of Co-DSL, which could achieve over 85% classification accuracy by using only two labeled samples from each mobile App category.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3