Ficus pandurata Hance Inhibits Ulcerative Colitis and Colitis-Associated Secondary Liver Damage of Mice by Enhancing Antioxidation Activity

Author:

Dai Weibo1ORCID,Zhan Xinyi1ORCID,Peng Weijie1ORCID,Liu Xin1,Peng Weiwen1ORCID,Mei Quanxi12,Hu Xianjing34ORCID

Affiliation:

1. Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, 528401 Guangdong, China

2. Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101 Guangdong, China

3. Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China

4. Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 510632 Guangdong, China

Abstract

Inflammatory bowel disease (IBD), a global disease threatening human health, is commonly accompanied by secondary liver damage (SLD) mediated by the gut-liver axis. Oxidative stress acts a critical role in the onset of IBD, during which excessive oxidation would destroy the tight junctions between intestinal cells, promote proinflammatory factors to penetrate, and thereby damage the intestinal mucosa. Ficus pandurata Hance (FPH) is widely used for daily health care in South China. Our previous study showed that FPH protected acute liver damage induced by alcohol. However, there is no study reporting FPH treating ulcerative colitis (UC). This study is designed to investigate whether FPH could inhibit UC and reveal its potential mechanism. The results showed that FPH significantly alleviated the UC disease symptoms including the body weight loss, disease activity index (DAI), stool consistency changing, rectal bleeding, and colon length loss of UC mice induced by dextran sulfate sodium (DSS) and reversed the influences of DSS on myeloperoxidase (MPO) and diamine oxidase activity (DAO). FPH suppressed UC via inhibiting the TLR4/MyD88/NF-κB pathway and strengthened the gut barrier of mice via increasing the expressions of ZO-1 and occludin and enhancing the colonic antioxidative stress property by increasing the levels of T-SOD and GSH-Px and the expressions of NRF2, HO-1, and NQO1 and reducing MDA level and Keap1, p22-phox, and NOX2 expressions. Furthermore, FPH significantly inhibited SLD related to colitis by reducing the abnormal levels of the liver index, ALT, AST, and cytokines including TNFα, LPS, LBP, sCD14, and IL-18 in the livers, as well as decreasing the protein expressions of NLRP3, TNFα, LBP, CD14, TLR4, MyD88, NF-κB, and p-NF-κB, suggesting that FPH alleviated UC-related SLD via suppressing inflammation mediated by inhibiting the TLR4/MyD88/NF-κB pathway. Our study firstly investigates the anticolitis pharmacological efficacy of FPH, suggesting that it can be enlarged to treat colitis and colitis-associated liver diseases in humans.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3