Thermal Stability of Cryomilled Al-Mg-Er Powders

Author:

Akinrinlola Bamidele1ORCID,Gauvin Raynald1,Blais Carl2,Brochu Mathieu1

Affiliation:

1. Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada H3A 0C5

2. Department of Mining, Metallurgical and Materials Engineering, Laval University, Quebec City, QC, Canada G1V 0A6

Abstract

In this study, the thermal stability of nanostructured Al-Mg alloy powders was investigated. Two alloy compositions, Al-5Mg-0.1Er and Al-5Mg-0.5Er (wt.%), were cryogenically milled for 30 h to produce nanostructured powders. The microstructure of the milled powders with increasing temperature was investigated by differential scanning calorimetry (DSC) with one-hour annealing performed at selected temperatures followed by X-ray diffraction (XRD) and electron microscopy analysis. Prolonged milling led to significant oxygen pick-up in the powders. The Al-5Mg-0.1Er powders experienced grain growth typical of cryomilled Al-Mg powders, while the Al-5Mg-0.5Er alloy showed improved thermal stability. An average grain size of ~20 nm was observed up to 400°C (~0.8Tm) in the Al-5Mg-0.5Er powders, and abnormal growth at 550°C resulted in a maximum observed grain size of 234 nm. Thermal stability in the Al-Mg-Er powders is attributed to the combined effects of solute/impurity drag and second-phase pinning (nanoscale oxides, nitrides, and oxynitrides) that impede grain boundary motion.

Funder

FQRNT

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3