Facial Expression Recognition Using a Novel Modeling of Combined Gray Local Binary Pattern

Author:

Ton-That An H.1ORCID,Cao Nhan T.23ORCID

Affiliation:

1. Information Technology Faculty, University of Finance and Marketing, Address: 778 Nguyen Kiem Street, Phu Nhuan District, Ho Chi Minh City 700000, Vietnam

2. University of Information Technology, Ho Chi Minh City, Vietnam

3. Vietnam National University, Ho Chi Minh City 700000, Vietnam

Abstract

Facial Expression Recognition (FER) is an active research field at present. Deep learning is a good method that is widely used in this field but it has extreme hardware requirements and it is hard to apply in normal terminal devices. So, many other methods are being researched to apply FER in such devices and systems. This work proposes fresh modeling of Combined Gray Local Binary Pattern (CGLBP) for extracting features in facial expression recognition to enhance the recognition rate that can apply FER in the kind of devices and systems. The work included the main steps such as the technique of cropping an input face image from a camera or dataset, the approach of dividing face images into nonoverlap regions for extracting LBP features, applying the fresh modeling of Combined Gray Local Binary Pattern (CGLBP) for extracting features, using uniform feature to reduce the lengths of descriptors, and finally using Support Vector Machine (SVM) for emotion classification. Four popular facial emotion datasets are used in experiments and their results demonstrate that the recognition rate of the proposed method is better in comparison with two types of existent features: Local Binary Pattern (LBP) and Combined Local Binary Pattern (CLBP). The accuracy of experiments performed on four facial expression datasets with different sizes is from about 95% to more than 99%.

Funder

University of Finance and Marketing

Publisher

Hindawi Limited

Subject

Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3