Hybrid Composites from Wheat Straw, Inorganic Filler, and Recycled Polypropylene: Morphology and Mechanical and Thermal Expansion Performance

Author:

Yu Min1,Huang Runzhou2,He Chunxia3,Wu Qinglin4,Zhao Xueni1

Affiliation:

1. College of Mechanical & Electrical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China

2. College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China

3. Jiangsu Key Laboratory for Intelligent Agricultural Equipment, College of Engineering, Nanjing Agricultural University, Nanjing 210031, China

4. School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA

Abstract

Reinforcing effect of hybrid filler including wheat straw (WS) and inorganic filler (heavy calcium carbonate, silicon dioxide, and fly ash) in recycled polypropylene (R-PP) has been investigated. The effects of individual filler (WS) and combined fillers (WS and inorganic filler) on morphological, mechanical, and thermal expansion and water absorption properties of hybrid composites were investigated. The flexural modulus and flexural strength were both reduced when reinforced with three kinds of inorganic fillers, respectively, which was possibly due to the poor interphase adhesion as observed in SEM. The high surface energy of heavy calcium carbonate due to its high acidic character provides an opportunity of better PP-heavy calcium carbonate interfacial interactions compared to PP-straw, PP-fly ash, and PP-SiO2interface. The water absorption at saturation increased markedly by introduction of WS in it. The hybrid composites from WS and inorganic fillers showed better water absorption compared to those WS/PP composites. The thermal expansion of composites decreased with the increase of WS loading. Heavy calcium and SiO2can obviously reduce the LCTE value of composite. At the 25% inorganic filler content, composites had the smallest LCTE values.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3