CNFA: ConvNeXt Fusion Attention Module for Age Recognition of the Tangerine Peel

Author:

Deng Fuqin123,Li Junwei1ORCID,Fu Lanhui1ORCID,Qin Chuanbo1ORCID,Zhai Yikui1ORCID,Wang Hongmin1,Yi Ningbo4,Li Nannan5ORCID,Lam TinLun23ORCID

Affiliation:

1. School of Electronic and Information Engineering, Wuyi University, Jiangmen 529020, China

2. School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China

3. The Shenzhen Institute of Artificial Intelligence and Robotics for Society, The Chinese University of Hong Kong, Shenzhen 518100, China

4. School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China

5. School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau 999078, China

Abstract

Xinhui tangerine peel has valuable medicinal value. The longer it is stored in an appropriate environment, the higher its flavonoid content, resulting in increased medicinal value. In order to correctly identify the age of the tangerine peel, previous studies have mostly used manual identification or physical and chemical analysis, which is a tedious and costly process. This work investigates the automatic age recognition of the tangerine peel based on deep learning and attention mechanisms. We proposed an effective ConvNeXt fusion attention module (CNFA), which consists of three parts, a ConvNeXt block for extracting low-level features’ information and aggregating hierarchical features, a channel squeeze-and-excitation (cSE) block and a spatial squeeze-and-excitation (sSE) block for generating sufficient high-level feature information from both channel and spatial dimensions. To analyze the features of tangerine peel in different ages and evaluate the performance of CNFA module, we conducted comparative experiments using the CNFA-integrated network on the Xinhui tangerine peel dataset. The proposed algorithm is compared with related models of the proposed structure and other attention mechanisms. The experimental results showed that the proposed algorithm had an accuracy of 97.17%, precision of 96.18%, recall of 96.09%, and F1 score of 96.13% for age recognition of the tangerine peel, providing a visual solution for the intelligent development of the tangerine peel industry.

Funder

Wuyi University

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3