The Development of a Mathematical Model for the Prediction of Corrosion Rate Behaviour for Mild Steel in 0.5 M Sulphuric Acid

Author:

Suleiman I. Y.1,Oloche O. B.2,Yaro S. A.3

Affiliation:

1. Department of Metallurgical Engineering, Waziri Umaru Federal Polytechnic, Birnin Kebbi, Nigeria

2. Department of Mechanical Engineering, University of Abuja, Abuja, Nigeria

3. Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Zaria, Nigeria

Abstract

The effect of varying temperature, concentration, and time on the corrosion rate of mild steel in 0.5 M H2SO4 acid with and without (wild jute tree) grewia venusta plant extract has been investigated by weight loss. The temperature, concentration of inhibitor and time were varied in the range of 0–10% v/v at 2% v/v interval, 30–70C at 20C interval, and 45–270 minutes at 45 minutes interval respectively. Scanning electron microscope was used to analyze the morphology of the sample surface. Linear regression equation and analysis of variance (ANOVA) were employed to investigate the influence of process parameters on the corrosion rate of the samples. The predicted corrosion rate of the samples was found to lie close to those experimentally observed ones. The confirmation of the experiment conducted using ANOVA to verify the optimal testing parameters shows that the increase in inhibitor concentration above 2% v/v and time would reduce the corrosion rate. The results also showed that the increase in temperature would also increase the corrosion rate greatly and that the plant extract was very effective for the corrosion inhibition of mild steel in acidic medium.

Publisher

Hindawi Limited

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3