Synthesis of Titanium Oxide Nanoparticles Using Root Extract of Kniphofia foliosa as a Template, Characterization, and Its Application on Drug Resistance Bacteria

Author:

Bekele Eneyew Tilahun1,Gonfa Bedasa Abdisa1ORCID,Zelekew Osman Ahmed2ORCID,Belay Hadgu Hailekiros1,Sabir Fedlu Kedir1ORCID

Affiliation:

1. Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia

2. Department of Materials Science and Engineering, School of Chemical, Mechanicals and Materials Engineering, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia

Abstract

Biogenic methods of synthesis of nanoparticles (NPs) using plant extracts have been given a great attention due to its nontoxicity and environmental friendliness. In this study, TiO2 NPs were synthesized from titanium tetrabutoxide and extract of root of Kniphofia foliosa. NPs of TiO2 were biosynthesized at different volume compositions of titanium tetrabutoxide to the plant extract with a ratio of 1 : 2, 1 : 1, and 2 : 1, respectively. These green synthesized NPs of TiO2 were characterized by thermogravimetric analysis (TGA/DTA), X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), and Fourier transform infrared (FTIR) spectroscopy. TGA/DTA analysis has confirmed that the synthesized NPs of TiO2 were stable above the temperature of 500°C. The sharp and intense peaks at 2θ values of 25.3, 38.0, 47.9, 53.2, 54.8862, 62.7, 70.2, and 75.0 have confirmed formation of crystalline NPs of TiO2 in the sample of 1 : 1 and 2 : 1 ratios, and less crystalline samples for TiO2 NPs prepared in a 1 : 2 ratio. Comparison between FT-IR absorption bands of the plant extract and that of calcined NPs of TiO2 confirmed the purity of synthesized nanomaterials, except unavoidable adsorption of moisture on the surface of TiO2 NPs in an open air. The antibacterial activity of biosynthesized TiO2 NPs and that of ethanolic root extract of Kniphofia foliosa was investigated via the disc diffusion method against human pathogen bacteria strains of Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, and Streptococcus pyogenes. Among the different ratios, TiO2 (1 : 1) NP shows better performance towards Gram-negative bacteria due to its smaller average crystalline size and uniform morphology observed in SEM image relative to the other two ratios of TiO2 NPs. Antibacterial activity of the ethanolic root extract of Kniphofia foliosa itself showed better performance towards Gram-negative bacteria than NPs of TiO2 that might be due to antibacterial activity of residue of ethanol left with the plant extract.

Funder

Adama Science and Technology University

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3