Biosynthesis of Silver Nanoparticles from Rhododendron arboreum for Metal Sensing, Antibacterial Assessment, and Photocatalytic Degradation

Author:

Phuyal Sitaram1ORCID,Lamichhane Ganesh1ORCID,Gupta Aakash2ORCID,Khadayat Karan1ORCID,Adhikari Anup1ORCID,Marahatha Rishab1ORCID,Khadka Sujan3ORCID,Parajuli Niranjan1ORCID

Affiliation:

1. Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44600, Nepal

2. Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA

3. Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan 44207, Nepal

Abstract

The nanomaterial industry has focused on green synthetic methods to avoid unpleasant compounds produced during manufacturing, offering eco-friendly, sustainable, and nature-derived alternative methods. In this study, silver nanoparticles (Ag NPs) have been synthesized from an aqueous extract of the leaves of Rhododendron arboreum, where the pH of the reaction mixture is found to be crucial. The reaction progress monitored using the UV-Vis spectrophotometer displayed a strong absorption band at 425 nm at pH 9, suggesting an optimum pH for the synthesis. The Ag NPs thus synthesized were characterized using instrumental techniques. The attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of phytoconstituents in the aqueous extract, which are believed to be responsible for reducing Ag+ ions to Ag NPs and capping agents on its surface for stability. X-ray diffraction (XRD) showed a highly crystalline nature, and energy-dispersive X-ray (EDX) demonstrated the presence of metallic silver. The scanning and transmission electron microscopy (SEM and TEM, respectively) revealed crystalline morphology and monodisperse Ag NPs of sizes ranging from 23 to 41 nm. Furthermore, the metal-sensing activity of biosynthesized Ag NPs was evaluated using various metal ions; they were utilized for highly selective and sensitive colorimetric detection of Hg2+ in an aqueous medium among various metal ion solutions tested with the detection limit of 0.5 mM using the UV-Vis spectrophotometer. Similarly, they were also shown to be effective for the nanocatalytic activity for degradation of methylene blue dye up to 81%. These studies demonstrated Ag NPs as potential candidates for selective detection of mercury in water resources, a tool for sensing the heavy metals and degradation of synthetic dye from industrial effluents in wastewater treatment. Having the high surface-to-volume ratio and size-dependent functionality of Ag NPs, further optimization studies at micromolar and nanomolar detection limits will avail its better industrial utilization. Moreover, biologically mediated Ag NPs can also exhibit good antimicrobial activity against Staphylococcus aureus and Escherichia coli.

Funder

Cochin University of Science and Technology

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3