Research on Green Building Design Optimization Based on Building Information Modeling and Improved Genetic Algorithm

Author:

Liu Fengtao1,Ouyang Ting1ORCID,Huang Bingzhang1,Zhao Jiehong1

Affiliation:

1. Liuzhou Institute of Technology, Liuzhou City, Guangxi Province, China

Abstract

The energy consumption of the construction industry has been increasing year by year, posing a huge challenge to China’s dual carbon goals of peaking carbon emissions and achieving carbon neutrality. The Chinese construction industry has huge potential for energy conservation and emission reduction, and the government has therefore put forward requirements for constructing green buildings and formulated strict evaluation standards. The carbon emissions of the construction industry involve various stages of the entire life cycle and are closely related to the green building design standards that meet the requirements. This article sets multiple objective functions based on the two dimensions of the carbon emissions of the entire life cycle of buildings and green building evaluation and uses the NSGA-II algorithm in genetic algorithms to optimize ten indicators selected from the two objectives. Based on this, building information modeling (BIM) modeling was carried out for an office building project in Southwest China, and energy consumption analysis and evaluation were conducted based on the project’s multidisciplinary model. The dialectical relationship between the carbon emissions of the entire life cycle of buildings and the green building evaluation values was discovered, and the optimized parameter combination scheme corresponding to the Pareto solution set was obtained, providing a reference for using improved genetic algorithms and BIM technology to optimize green building design.

Funder

Ministry of Education Science and Technology Industry-University Cooperation and Education Project

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3