Effectively Monitoring the Performance of Integrated Process Control Systems under Nonstationary Disturbances

Author:

Kandananond Karin1

Affiliation:

1. Faculty of Industrial Technology, Valaya Alongkorn Rajabhat University (VRU). 1 Moo 20 Phaholyothin Road, Klongluang, Pathum Thani 13180, Thailand

Abstract

The objective of this paper is to quantify the effect of autocorrelation coefficients, shift magnitude, types of control charts, types of controllers, and types of monitored signals on a control system. Statistical process control (SPC) and automatic process control (APC) were studied under non-stationary stochastic disturbances characterized by the integrated moving average model, ARIMA(0,1,1). A process model was simulated to achieve two responses, mean squared error (MSE) and average run length (ARL). A factorial design experiment was conducted to analyze the simulated results. The results revealed that not only shift magnitude and the level of autocorrelation coefficients, but also the interaction between these two factors, affected the integrated system performance. It was also found that the most appropriate combination of SPC and APC is the utilization of the minimum mean squared error (MMSE) controller with the Shewhart moving range (MR) chart, while monitoring the control signal (X) from the controller. Therefore, integrating SPC and APC can improve process manufacturing, but the performance of the integrated system is significantly affected by process autocorrelation. Therefore, if the performance of the integrated system under non-stationary disturbances is correctly characterized, practitioners will have guidelines for achieving the highest possible performance potential when integrating SPC and APC.

Publisher

Hindawi Limited

Subject

Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3