Semitransparent Building-Integrated Photovoltaic: Review on Energy Performance, Challenges, and Future Potential

Author:

Joseph Benedicto12ORCID,Pogrebnaya Tatiana1,Kichonge Baraka3ORCID

Affiliation:

1. Department of Materials and Energy Science and Engineering (MESE), Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania

2. Department of Electrical and Electronics Engineering, St. Joseph University in Tanzania (SJUIT), P.O. Box 11007, Dar es Salaam, Tanzania

3. Department of Mechanical Engineering, Arusha Technical College (ATC), P.O. Box 296, Arusha, Tanzania

Abstract

Buildings consume large amounts of energy, and their transformation from energy users to producers has attracted increasing interest in the quest to help optimize the energy share, increasing energy efficiency and environmental protection. The use of energy-efficient materials is among the proposed approaches to increase the building’s energy balance, thus increasing the performance of building facades. Semitransparent building-integrated photovoltaic (BIPV), being one of the technologies with the potential to increase a building’s energy efficiency, is considered as a feasible method for renewable power generation to help buildings meet their own load, thus serving dual purposes. Semitransparent BIPV integration into buildings not only displaces conventional building facade materials but also simultaneously generates energy while retaining traditional functional roles. The awareness in improving building energy efficiency has increased as well as the awareness in promoting the use of clean or renewable energy technologies. In this study, semitransparent BIPV technology is reviewed in terms of energy generation, challenges, and ways to address limitations which can be used as a reference for the BIPV stakeholders.

Funder

Nelson Mandela African Institution of Science and Technology

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3