Geometries and Electronic States of Divacancy Defect in Finite-Size Hexagonal Graphene Flakes

Author:

Liu Lili1,Chen Shimou2ORCID

Affiliation:

1. Department of Chemistry, School of Science, Beijing Technology and Business University, Beijing 100048, China

2. Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

Abstract

The geometries and electronic properties of divacancies with two kinds of structures were investigated by the first-principles (U) B3LYP/STO-3G and self-consistent-charge density-functional tight-binding (SCC-DFTB) method. Different from the reported understanding of these properties of divacancy in graphene and carbon nanotubes, it was found that the ground state of the divacancy with 585 configurations is closed shell singlet state and much more stable than the 555777 configurations in the smaller graphene flakes, which is preferred to triplet state. But when the sizes of the graphene become larger, the 555777 defects will be more stable. In addition, the spin density properties of the both configurations are studied in this paper.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3