Affiliation:
1. School of Mathematics and Statistics, Xidian University, Xi’an, Shaanxi 710071, China
2. School of Mathematics, Changzhi University, Changzhi, Shanxi 046011, China
Abstract
The principal resonance of a delayed piecewise-smooth (DPWS) system with negative stiffness under narrow-band random excitation is investigated in aspects of multiscale analysis, design methodology of the controller, and response properties. The amplitude-frequency response and steady-state moments together with the corresponding stability conditions of the controlled stochastic system are derived, in which the degradation case is also under consideration. Then, from the perspective of the equivalent damping, the comparisons of the response characteristics of the controlled system to the uncontrolled system, such as the phenomenon of frequency island, are fulfilled. Furthermore, sensitivity of the system response to feedback gain and time delay is studied and interesting dynamic properties are found. Meanwhile, the classification of the steady-state solution is also discussed. To control the maximum amplitude, the feedback parameters are determined by the frequency response together with stability boundaries which must be utilized to exclude the combinations of the unstable parameters. For the case with small noise intensity, mean-square responses present the similar characteristics to what is discussed in the deterministic case.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献