Affiliation:
1. Department of Aerospace Engineering, University of Kansas, 2120 Learned Hall 1530 W 15th Street, Lawrence, KS 66045, USA
Abstract
The main purpose of this paper is to develop an onboard adaptive and robust flight control system that improves control, stability, and survivability of a small unmanned aerial system in off-nominal or out-of-envelope conditions. The aerodynamics of aircraft associated with hazardous and adverse onboard conditions is inherently nonlinear and unsteady. The presented flight control system improves functionalities required to adapt the flight control in the presence of aircraft model uncertainties. The fault tolerant inner loop is enhanced by an adaptive real-time artificial neural network parameter identification to monitor important changes in the aircraft’s dynamics due to nonlinear and unsteady aerodynamics. The real-time artificial neural network parameter identification is done using the sliding mode learning concept and a modified version of the self-adaptive Levenberg algorithm. Numerically estimated stability and control derivatives are obtained by delta-based methods. New nonlinear guidance logic, stable in Lyapunov sense, is developed to guide the aircraft. The designed flight control system has better performance compared to a commercial off-the-shelf autopilot system in guiding and controlling an unmanned air system during a trajectory following.
Funder
Center for Remote Sensing of Ice Sheets
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献