A Deep Learning Based Traffic State Estimation Method for Mixed Traffic Flow Environment

Author:

Ding Fan1,Zhang Yongyi12,Chen Rui3,Liu Zhanwen4,Tan Huachun1ORCID

Affiliation:

1. School of Transportation, Southeast University, Nanjing 211189, China

2. Southeast University-Monash University Joint Graduate School, Suzhou, China

3. State Key Laboratory of Integrated Service Networks, Xidian University, Xidian 710071, China

4. School of Information Engineering, Chang’an University, Chang’an 710064, China

Abstract

Traffic state estimation plays a fundamental role in traffic control and management. In the connected vehicles (CVs) environment, more traffic-related data perceived and interacted by CVs can be used to estimate traffic state. However, when there is a low penetration rate of CVs, the data collected from CVs would be inadequate. Meanwhile, the representativeness of the collected data is positively correlated with the penetration rate. This article presents a traffic state estimation method based on a deep learning algorithm under a low and dynamic CVs penetration rate environment. Specifically, we design a K-Nearest Neighbor (KNN) data filling model integrating acceleration data to solve the problem of insufficient data. This method can fuse the time feature of speed by acceleration modification and mine the distribution features of speed by KNN. In addition, to reduce the estimation error caused by penetration rate, we design a Long Short-Term Memory (LSTM) model, which uses penetration rate estimated by Macroscopic Fundamental Diagram (MFD) as one of the input factors. Finally, we use the concept of operational efficiency for reference, dividing traffic state into three categories according to the estimated speed: free flow, optimal flow, and congestion. SUMO is used to simulate traffic cases under different penetration rates to evaluate our scheme. The results suggest that our data filling model can significantly improve filling accuracy under a low penetration rate; there is also a better performance of our estimation model than that of other comparison models in both low and dynamic penetration rates.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3