Affiliation:
1. State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University, Tianjin 300072, China
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) are one of the appealing MEMS devices. Most studies treat CMUTs as rigid plates vibrating in open air, ignoring the mechanical boundary conditions for simplification and resulting in cumulative errors in coupled fields. This paper presents a new analytical model for the pull-in characteristics of the flat circular CMUT cell featuring sealed cavity. Utilizing the plate theory coupled with Boyle’s law, the paper establishes a strong relation between the pressures inside the sealed cavity and the pull-in characteristics for the first time. Not only did we point out that the existence of the pressure inside the sealed cavity cannot be omitted, but we also quantified the direct effect of the pressure ratios on the pull-in phenomenon. The pull-in voltages increase while the pull-in ratios decrease with the pressure ratios of the pressure inside the sealed cavity to the ambient pressure. The proposed calculation process delivers a good approximation of the pull-in voltages and displacements, which are consistent with COMSOL simulation results. Particularly, the percentage error of our calculation process is 6.986% for the worst case. Therefore, our proposed analytical model accurately and efficiently predicts the pull-in characteristics and this paper offers new perspectives and reference value in designing and modeling the CMUTs.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献