Optimization of Parameters Using Response Surface Methodology to Develop a Novel Kefir-Like Functional Beverage from Cheese Whey Enriched with Myrtle Juice

Author:

M’hir Sana12ORCID,Mejri Asma1ORCID,Atrous Hajer1,Ayed Lamia1ORCID

Affiliation:

1. Laboratory of Microbial Ecology and Technology (LETMI), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP: 676. 1080, Tunis, Tunisia

2. Department of Animal Biotechnology, Higher Institute of Biotechnology of Beja, University of Jendouba, 9000, BP: 382, Beja 9000, Tunisia

Abstract

Whey, liquid wastewater from cheese production, is one of the sources of dietary protein and lactose that are still largely unused for human consumption. It is only in recent years that it has aroused the interest of industries and sought as a valuable raw material and thus represents an opportunity for the manufacture of new products. The manufacture of fermented whey drink requires the mixing of whey with fruit juice or an aromatic plant to improve its organoleptic properties and acceptability. Myrtle, an aromatic medicinal plant, known for its health benefits is not well exploited for making dairy products. This is the first report on the development of kefir-myrtle beverage. Three factors were optimized (whey permeates (%), myrtle’s juice (%), and kefir grains as inoculum (%)) using a central composite design with response surface methodology. The analyses showed that the number of lactic acid bacteria (LAB) and yeast cells varied from 5.4 to 9.2 log10 CFU/mL and from 4.3 to 6.2 log10 CFU/mL, respectively. A decrease in pH and an increase in the total polyphenol content and antioxidant activity were observed. The analysis of variance indicated the goodness of fit of the model with R2 from 0.827 to 0.966. The absolute average deviation values of each model were low and ranged from 1.61% to 4.23%. The optimized fermented kefir whey beverage accomplished an overall acceptability of 5.41 (1 to 9 preference scale) and a high number of LAB cells (8.53 log10 CFU/mL). The viability of LAB and yeast cell was maintained at 7.61 and 6.19 log10 CFU/mL, respectively, after 14 days of storage.

Funder

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3