Facile Synthesis of Monodisperse ZnO Nanocrystals by Direct Liquid Phase Precipitation

Author:

Chen Lan1,Holmes Justin D.1,Ramírez-García Sonia1,Morris Michael A.1

Affiliation:

1. Department of Chemistry, University College Cork, Cork, Ireland

Abstract

ZnO nanocrystals can be synthesized by a variety of methods. Among them, only a few nonhydrolytic methods have been successful at low synthesis temperatures in terms of size, crystallinity, morphology and surface-defect control. These methods require very careful control of conditions and carefully engineered precursors. A new methodology—direct liquid phase precipitation—is reported here that can produce nanocrystals (NCs) which are a little difficult to obtain for these complex synthesis techniques in a more facile and efficient way (i.e., at room temperature). This technique results in high quality ZnO nanocrystals of diameter 5–12 nm and different morphologies. Characterisation of ZnO products shows that both synthesis and ageing conditions have significant effects on the formation of the nanocrystals. Capping agents and ageing temperature/time can be used to control both size and crystallinity of the products. The use ofin situorex situageing conditions can result in different particle morphologies. Bothin situandex situageing shows that mild ageing conditions (e.g., 60–80Cand 24–48 hours) are required to produce the highest quality nanomaterials.

Funder

The BioNanoInteract Strategic Research Cluster

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3