The Ameliorative Role of Eugenol against Silver Nanoparticles-Induced Hepatotoxicity in Male Wistar Rats

Author:

Yousef Hany N.1ORCID,Ibraheim Somaya S.1,Ramadan Ramadan A.1,Aboelwafa Hanaa R.1ORCID

Affiliation:

1. Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo 11566, Egypt

Abstract

Background. Silver nanoparticles (AgNPs) utilization is becoming increasingly popular. The existing investigation evaluates the ameliorative impact of eugenol (Eug) against the toxic influences of AgNPs on rats’ liver. Methods. Sixty adult male rats were enrolled equally into control, Eug (100 mg kg-1 orally), AgNPs-low dose (1 mg kg-1 i.p), AgNPs-high dose (2 mg kg-1 i.p), Eug + AgNPs-low dose ( 100 mg k g 1 orally + 1 mg k g 1 i . p ), and Eug + AgNPs high dose ( 100 mg k g 1 orally + 2 mg k g 1 i . p ). All the groups were treated daily for 30 days, subsequently serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total protein, total albumin, lactate dehydrogenase (LDH), total oxidative capacity (TOC), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), total antioxidant capacity (TAC), and interleukin 6 (IL-6) levels were measured; hepatic tissues superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and glutathione peroxidase (GPx) levels were evaluated; histopathology and histomorphometry were documented in the liver of all groups; and Bcl-2, P53, Caspase-3, and TNF-α reactive proteins were also immunohistochemically detected. Results. AgNPs significantly triggered oxidative stress in hepatic tissues, characterized by elevated levels of AST, ALT, ALP, LDH, TOC, MDA, TNF-α, and IL-6 correlating with considerable decline in total protein, total albumin, TAC, SOD, CAT, GSH, and GPx. These changes were paralleled with histopathological alterations remarkable by devastation of the ordinary hepatic structure, with decrease in the numbers of normal hepatocytes, elevation in the numbers of necrotic hepatocytes, periportal and centrilobular inflammatory cells, deteriorated Kupffer cells, and dilated/congested central and portal veins. Alongside, a marked diminution in Bcl-2 immunoreactivity and a significant elevation in P53, Caspase-3, and TNF-α immunoreactivities were recorded. Supplementation of AgNPs-treated animals with Eug reversed most of the biochemical, histopathological, and immunohistochemical changes. Conclusion. This study proposed that Eug has an ameliorative effect against AgNPs-induced hepatotoxicity.

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3