Enhancing TFEB-Mediated Cellular Degradation Pathways by the mTORC1 Inhibitor Quercetin

Author:

Huang Yi1,Chen Yan12,Shaw Amanda Marie12,Goldfine Howard3ORCID,Tian Junqiang3,Cai Jiyang12ORCID

Affiliation:

1. Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA

2. Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA

3. USANA Health Sciences Inc., Salt Lake City, UT 84120, USA

Abstract

Signaling pathways mediated by the mechanistic target of rapamycin (mTOR) play key roles in aging and age-related diseases. As a downstream protein of mTOR, transcription factor EB (TFEB) controls lysosome biogenesis and cellular trafficking, processes that are essential for the functions of phagocytic cells like the retinal pigment epithelium (RPE). In the current study, we show that a naturally occurring polyphenolic compound, quercetin, promoted TFEB nuclear translocation and enhanced its transcriptional activity in cultured RPE cells. Activated TFEB facilitated degradation of phagocytosed photoreceptor outer segments. Quercetin is a direct inhibitor of mTOR but did not influence the activity of Akt at the tested concentration range. Our data suggest that the dietary compound quercetin can have beneficial roles in neuronal tissues by improving the functions of the TFEB-lysosome axis and enhancing the capacities of cellular degradation and self-renewal.

Funder

Carl Marshall and Mildred Almen Reeves Foundation

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3