Affiliation:
1. Institute of Automation, Chinese Academy of Sciences, The State Key Laboratory of Management and Control for Complex Systems, 95 Zhongguancun East Road, Beijing 100190, China
2. University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
Abstract
Plant disease is one of the primary causes of crop yield reduction. With the development of computer vision and deep learning technology, autonomous detection of plant surface lesion images collected by optical sensors has become an important research direction for timely crop disease diagnosis. In this paper, an anthracnose lesion detection method based on deep learning is proposed. Firstly, for the problem of insufficient image data caused by the random occurrence of apple diseases, in addition to traditional image augmentation techniques, Cycle-Consistent Adversarial Network (CycleGAN) deep learning model is used in this paper to accomplish data augmentation. These methods effectively enrich the diversity of training data and provide a solid foundation for training the detection model. In this paper, on the basis of image data augmentation, densely connected neural network (DenseNet) is utilized to optimize feature layers of the YOLO-V3 model which have lower resolution. DenseNet greatly improves the utilization of features in the neural network and enhances the detection result of the YOLO-V3 model. It is verified in experiments that the improved model exceeds Faster R-CNN with VGG16 NET, the original YOLO-V3 model, and other three state-of-the-art networks in detection performance, and it can realize real-time detection. The proposed method can be well applied to the detection of anthracnose lesions on apple surfaces in orchards.
Funder
National Key Research and Development Program of China
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
147 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献