Targeting Ferroptosis Attenuates Inflammation, Fibrosis, and Mast Cell Activation in Chronic Prostatitis

Author:

Lin Dongxu12ORCID,Zhang Mengyang12ORCID,Luo Changcheng12ORCID,Wei Pengyu12ORCID,Cui Kai12ORCID,Chen Zhong12ORCID

Affiliation:

1. Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China

2. Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China

Abstract

Purpose. Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common urological disorder. Although ferroptosis is closely associated with inflammation, oxidative stress, and neuropathic pain, its role in CP/CPPS has not yet been elucidated. Therefore, we sought to explore the role and mechanism of ferroptosis in the prostatitis development. Methods. The experimental autoimmune prostatitis (EAP) was established through intradermal immunization of prostate extract. Iron chelator deferoxamine (DFO) and free radical scavenger edaravone (EDA) were applied to evaluate the effects of ferroptosis inhibition on oxidative stress, ferroptosis, inflammation, fibrosis, and mast cell activation in the context of CP/CPPS. Results. Increased generation of lipid peroxidation products (ROS and MDA) and decreased activities of antioxidant enzymes (SOD and CAT) suggested an aberrant oxidative stress status in EAP model. Elevated iron concentration was observed in the EAP model. Meanwhile, we discovered significant biological performances associated with ferroptosis in CP/CPPS, including the downregulation of the system Xc-/GPX4 axis and the upregulation of the ACSL4/LPCAT3 axis. EAP rats performed serious leukocyte infiltration, advanced inflammatory grade, and abnormal expression of inflammatory mediators. Abundant collagen deposition, enhanced RhoA, ROCK1, and α-SMA protein levels indicated that EAP rats were prone to suffer from stromal fibrosis compared with control group. An elevated number of degranulated mast cells and corresponding marker TPSB2 represented that mast cell-sensitized pain was amplified in the EAP model. Furthermore, reduction of NRF2/HO-1 indicated a vulnerability of EAP towards ferroptosis response. However, application of DFO and EDA had partially reversed the adverse influences mentioned above. Conclusion. We first demonstrated that ferroptosis might be a crucial factor of chronic prostatitis progression. Inhibition of ferroptosis using DFO and EDA represented a promising approach for treating prostatitis by ameliorating inflammation, fibrosis, and mast cell activation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3