Affiliation:
1. School of Chinese Language and Literature, Nanjing Normal University, Nanjing, China
Abstract
To investigate the effectiveness of identifying patients with Parkinson’s disease (PD) from speech signals, various acoustic parameters including prosodic and segmental features are extracted from speech and then the random forest classification (RF) algorithm based on these acoustic parameters is applied to diagnose early-stage PD patients. To validate the proposed method of RF algorithm in early-stage PD identification, this study compares the accuracy rate of RF with that of neurologists’ judgments based on auditory test outcomes, and the results clearly show the superiority of the proposed method over its rival. Random forest algorithm based on speech can improve the accuracy of patients’ identification, which provides an efficient auxiliary method in the early diagnosis of PD patients.
Funder
Chinese National Funding of Social Sciences
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献