Circular RNA Profiling by Illumina Sequencing via Template-Dependent Multiple Displacement Amplification

Author:

Guria Ashirbad1ORCID,Velayudha Vimala Kumar Kavitha1ORCID,Srikakulam Nagesh1ORCID,Krishnamma Anakha1ORCID,Chanda Saibal1ORCID,Sharma Satyam1ORCID,Fan Xiaofeng2ORCID,Pandi Gopal1ORCID

Affiliation:

1. Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India

2. Division of Gastroenterology and Hepatology, Saint Louis University Liver Center, Saint Louis University, St. Louis, MO 63110, USA

Abstract

Circular RNAs (circRNAs) are newly discovered incipient non-coding RNAs with potential roles in disease progression in living organisms. Significant reports, since their inception, highlight the abundance and putative functional roles of circRNAs in every organism checked for, like O. sativa, Arabidopsis, human, and mouse. CircRNA expression is generally less than their linear mRNA counterparts which fairly explains the competitive edge of canonical splicing over non-canonical splicing. However, existing methods may not be sensitive enough for the discovery of low-level expressed circRNAs. By combining template-dependent multiple displacement amplification (tdMDA), Illumina sequencing, and bioinformatics tools, we have developed an experimental protocol that is able to detect 1,875 novel and known circRNAs from O. sativa. The same method also revealed 9,242 putative circRNAs in less than 40 million reads for the first time from the Nicotiana benthamiana whose genome has not been fully annotated. Supported by the PCR-based validation and Sanger sequencing of selective circRNAs, our method represents a valuable tool in profiling circRNAs from the organisms with or without genome annotation.

Funder

Department of Biotechnology

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3