A Data-Driven Fault Prediction Method for Nuclear Power Systems Based on End-to-End Deep Learning Framework

Author:

Chao Lu1,Wang Chunbing1,Chen Shuai2ORCID,Duan Qizhi1ORCID,Xie Hongyun1ORCID

Affiliation:

1. State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd., Shenzhen 518172, China

2. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China

Abstract

With the increase in system complexity and operational performance requirements, nuclear energy systems are developing in the direction of intelligence and unmanned, which also requires a higher demand for its safety so that intelligent fault diagnosis and prediction have become a technology that nuclear power plants need to develop at present. At the same time, due to the rapid development of deep learning technology, it has become a meaningful development direction to predict the fault state of nuclear power plants within the framework of supervised deep learning. Usually, the network structure model used in fault diagnosis and prediction requires professional design, which may cost a lot of time and make it difficult to achieve optimal results. For this purpose, we present an end-to-end deep network for nuclear power system prediction (EDN-NPSP), which can automatically mine the transient features of various detection data in the NPS at the current moment through heterogeneous convolution kernels that can increase the receptive field and then predict the feature evolution results of the NPS in the future through a special deep CNN. The results provide an assessment of the future state of NPS. Based on EDN-NPSP presented in this work, we can avoid complicated manual feature extraction and provide the predicted state directly and rapidly. It will provide operators with useful prediction information and enhance the nuclear energy system fault prediction capabilities.

Funder

Guangdong Basic and Applied Basic Research Foundation

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3