Mixed Event-Frame Vision System for Daytime Preceding Vehicle Taillight Signal Measurement Using Event-Based Neuromorphic Vision Sensor

Author:

Liu Zhengfa1ORCID,Chen Guang12ORCID,Wu Ya1ORCID,Du Jiatong1ORCID,Conradt Jörg3ORCID,Knoll Alois2ORCID

Affiliation:

1. College of Automotive Engineering, Tongji University, Shanghai 201804, China

2. Chair of Robotics, Artificial Intelligence and Real-Time Systems, Technical University of Munich, Munich 85748, Germany

3. KTH Royal Institute of Technology, Stockholm 11428, Sweden

Abstract

An important aspect of the perception system for intelligent vehicles is the detection and signal measurement of vehicle taillights. In this work, we present a novel vision-based measurement (VBM) system, using an event-based neuromorphic vision sensor, which is able to detect and measure the vehicle taillight signal robustly. To the best of our knowledge, it is for the first time the neuromorphic vision sensor is paid attention to for utilizing in the field of vehicle taillight signal measurement. The event-based neuromorphic vision sensor is a bioinspired sensor that records pixel-level intensity changes, called events, as well as the whole picture of the scene. The events naturally respond to illumination changes (such as the ON and OFF state of taillights) in the scene with very low latency. Moreover, the property of a higher dynamic range increases the sensor sensitivity and performance in poor lighting conditions. In this paper, we consider an event-driven solution to measure vehicle taillight signals. In contrast to most existing work that relies purely on standard frame-based cameras for the taillight signal measurement, the presented mixed event/frame system extracts the frequency domain features from the spatial and temporal signal of each taillight region and measures the taillight signal by combining the active-pixel sensor (APS) frames and dynamic vision sensor (DVS) events. A thresholding algorithm and a learned classifier are proposed to jointly achieve the brake-light and turn-light signal measurement. Experiments with real traffic scenes demonstrate the performance of measuring taillight signals under different traffic conditions with a single event-based neuromorphic vision sensor. The results show the high potential of the event-based neuromorphic vision sensor being used for optical signal measurement applications, especially in dynamic environments.

Funder

Horizon 2020 Framework Programme

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3