Using Machine Learning Techniques to Predict Learner Drop-out Rate in Higher Educational Institutions

Author:

Dake Delali Kwasi1ORCID,Buabeng-Andoh Charles1ORCID

Affiliation:

1. Department of ICT Education, University of Education, P.O. 25, Winneba, Ghana

Abstract

Recently, students dropping out of school at the tertiary level without prior notice or permission has intrigued deep concern among academic authorities, instructors, and counsellors. It has therefore become necessary to understand factors that lead to high attrition rates among learners and identify at-risk students for urgent academic counselling. In providing a proactive response to learner attrition, the study deployed a machine learning algorithm with high model accuracy to predict students’ drop-out rates and identify dominant attributes that affect learner attrition and retention. An attrition model was built and validated among support vector machine, decision tree, multilayer perceptron, and random forest algorithms. The machine learning algorithms were tested for accuracy, precision, recall, F-measure, and ROC using the 10-fold and the 5-fold comparative cross-validation techniques. In addition to the cross-validation technique, the chi-square feature selection mechanism was implemented to understand the algorithms’ training time and accuracy. The random forest emerged as the best-performing algorithm, with an accuracy of 70.98% and 69.74% for the 10-fold and the 5-fold cross-validation implementations, respectively.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference41 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3