Optimization of Surface Quality and Power Consumption in Machining Hardened AISI 4340 Steel

Author:

Ochengo Dennis1ORCID,Liang Li1,Wei Zhao1,Ning He1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Hard turning has become an attractive method of machining for most manufacturers in the last few years due to its low cost and superior surface quality compared to grinding. In this experimental study, the machinability of hardened steel under dry machining on a CNC lathe is undertaken to optimize the cutting parameters for minimum surface roughness and energy consumption with the cutting speed (320, 450, and 575), tool type (coated and uncoated), and feed rate (0.1, 0.18, and 0.26) as the input parameters. The Taguchi method, based on the L18 orthogonal array, the variance analysis, the signal-to-noise ratios, and the response surface methodology have been used to optimize surface roughness (Ra) and cutting power (Cp). Optimum cutting parameters and levels were determined, and the relationship between cutting parameters and output variables was analyzed with the aid of two-dimensional and three-dimensional graphics. The results show that the most effective parameter on the surface roughness was the tool type (78%), while the most effective parameter on energy consumption was the cutting speed (90%). The combination of low feed rate and high cutting speed is necessary for minimizing the surface roughness. Besides, the impact of two-factor interactions of the feed rate-cutting speed and depth of cut-cutting speed appears to be substantial. The linear regression models were validated using confirmation tests. Finally, regression coefficients were determined as a mathematical model, and it was observed that this estimated model yielded results that were very similar to those achieved via real experiment (correlation values: 97.64% for surface roughness and 98.72% for energy consumption).

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3