Feasibility of Using High-Resolution Computed Tomography Features for Invasiveness Differentiation of Malignant Nodules Manifesting as Ground-Glass Nodules

Author:

Chen Xinyue1,Yao Benbo2,Li Juan3,Liang Chunxiao3,Qi Rui3,Yu Jianqun3ORCID

Affiliation:

1. CT Collaboration NE Asia, Siemens Healthineers, Chengdu, China

2. Department of Radiology, Zigong Fourth People’s Hospital, Zigong, China

3. Department of Radiology, West China Hospital, Sichuan University, Chengdu, China

Abstract

Ground-glass nodule (GGN)-like adenocarcinoma is a special subtype of lung cancer. The invasiveness of the nodule correlates well with the patient’s prognosis. This study aimed to establish a radiomic model for invasiveness differentiation of malignant nodules manifesting as ground glass on high-resolution computed tomography (HRCT). Between January 2014 and July 2019, 276 pulmonary nodules manifesting as GGNs on preoperative HRCTs, whose histological results were available, were collected. The nodules were randomly classified into training (n = 221) and independent testing (n = 55) cohorts. Three logistic models using features derived from HRCT were fit in the training cohort and validated in both aforementioned cohorts for invasive adenocarcinoma and preinvasive-minimally invasive adenocarcinoma (MIA) differentiation. The model with the best performance was presented as a nomogram and was validated using a calibration curve before performing a decision curve analysis. The benefit of using the proposed model was also shown by groups of management strategies recommended by The Fleischner Society. The combined model showed the best differentiation performance (area under the curve (AUC), training set = 0.89, and testing set = 0.92). The quantitative texture model showed better performance (AUC, training set = 0.87, and testing set = 0.91) than the semantic model (AUC, training set = 0.83, and testing set = 0.79). Of the 94 type 2 nodules that were IACs, 66 were identified by this model. Models using features derived from imaging are effective for differentiating between preinvasive-MIA and IACs among lung adenocarcinomas appearing as GGNs on CT images.

Publisher

Hindawi Limited

Subject

Pulmonary and Respiratory Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3