Affiliation:
1. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
2. College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
Abstract
Dissolution of the hydroxypyromorphite [lead hydroxyapatite, Pb5(PO4)3OH] in HNO3solution (pH = 2.00), ultrapure water (pH = 5.60), and NaOH solution (pH = 9.00) was experimentally studied at 25°C, 35°C, and 45°C. The XRD, FT-IR, and FE-SEM analyses indicated that the hydroxypyromorphite solids were observed to have indistinguishable change during dissolution. For the hydroxypyromorphite dissolution in aqueous acidic media at initial pH 2.00 and 25°C, the aqueous phosphate concentrations rose quickly and reached the peak values after 1 h dissolution, while the aqueous lead concentrations rose slowly and reached the peak values after 1440 h. The solution Pb/P molar ratio increased constantly from 1.10 to 1.65 near the stoichiometric ratio of 1.67 to 209.85~597.72 and then decreased to 74.76~237.26 for the dissolution at initial pH 2.00 and 25°C~45°C. The averageKspvalues for Pb5(PO4)3OH were determined to be 10−80.77(10−80.57−10−80.96) at 25°C, 10−80.65(10−80.38−10−80.99) at 35°C, and 10−79.96(10−79.38−10−80.71) at 45°C. From the obtained solubility data for the dissolution at initial pH 2.00 and 25°C, the Gibbs free energy of formation [ΔGfo] for Pb5(PO4)3OH was calculated to be −3796.71 kJ/mol (−3795.55~−3797.78 kJ/mol).
Funder
National Natural Science Foundation of China
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献