Predicting Outcomes in Emergency Medical Admissions Using a Laboratory Only Nomogram

Author:

Cournane Seán1,Conway Richard2,Byrne Declan2,O’Riordan Deirdre2,Silke Bernard2ORCID

Affiliation:

1. Medical Physics and Bioengineering Department, St. James’s Hospital, Dublin 8, Ireland

2. Department of Internal Medicine, St. James’s Hospital, Dublin 8, Ireland

Abstract

Background. We describe a nomogram to explain an Acute Illness Severity model, derived from emergency room triage and admission laboratory data, to predict 30-day in-hospital survival following an emergency medical admission. Methods. For emergency medical admissions (96,305 episodes in 50,612 patients) between 2002 and 2016, the relationship between 30-day in-hospital mortality and admission laboratory data was determined using logistic regression. The previously validated Acute Illness Severity model was then transposed to a Kattan-style nomogram with a Stata user-written program. Results. The Acute Illness Severity was based on the admission Manchester triage category and biochemical laboratory score; these latter were based on the serum albumin, sodium, potassium, urea, red cell distribution width, and troponin status. The laboratory admission data was predictive with an AUROC of 0.85 (95% CI: 0.85, 0.86). The sensitivity was 94.4%, with a specificity of 62.7%. The positive predictive value was 21.2%, with a negative predictive value of 99.1%. For the Kattan-style nomogram, the regression coefficients are converted to a 100-point scale with the predictor parameters mapped to a probability axis. The nomogram would be an easy-to-use tool at the bedside and for educational purposes, illustrating the relative importance of the contribution of each predictor to the overall score. Conclusion. A nomogram to illustrate and explain the prognostic factors underlying an Acute Illness Severity Score system is described.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3