Influence of the Amount of Steel Fibers on Fracture Energy and Drying Shrinkage of HPFRCC

Author:

Guo Weina1ORCID,Zhang Peng1ORCID,Tian Yupeng1,Wang Bing2,Ma Wan1

Affiliation:

1. Center for Durability & Sustainability Studies of Shandong Province, Qingdao University of Technology, Qingdao 266033, China

2. Qingdao Municipal Construction Group, Qingdao 266000, China

Abstract

The fracture energy of the high-performance fiber-reinforced cement-based composite (HPFRCC) can be modified within wide limits by the variation of the amount of steel fibers added to the fresh mix. First of all, considering the actual engineering conditions in Qingdao, the materials commonly used in Qingdao were selected. The optimal reference mix proportion of the HPFRCC cementing material was proposed through determination of fluidity and flexural strength. Based on the optimal mix proportion, the uniaxial tensile, fracture, and dry shrinkage properties of HPFRCC with different steel fibers are systematically studied. Stress-strain diagrams of the different samples were measured under the uniaxial tensile test, wedge splitting test, and three-point bending test. The steel fiber content was varied between 0 and 200 kg/m3. The load bearing capacity and the fracture energy were determined experimentally. In addition, moisture loss as a function of time and shrinkage was determined in an environment of 20°C and 50% RH (relative humidity). The results indicate that the maximum load increases significantly in the HPFRCC series reinforced by 150 and 200 kg/m3 of steel fibers. Both have a hardening branch developed after the first crack deflection due to the high percentage of fibers bridging the crack surfaces. The load bearing capacity and fracture energy increased almost linearly with the steel fiber content. It was found that the three-point bending test is more applicable in measuring the fracture energy of HPFRCC than the wedge splitting test. The addition of steel fibers decreased the moisture diffusion and consequently the drying shrinkage of HPFRCC, and there was minimum weight loss and deformation when the steel fiber content was 150 kg/m3. The results obtained will be presented and discussed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3